Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=a+b\sqrt{3}
Whakangāwaritia te tauraro o \frac{2+\sqrt{3}}{2-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Whakaarohia te \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}=a+b\sqrt{3}
Pūrua 2. Pūrua \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}=a+b\sqrt{3}
Tangohia te 3 i te 4, ka 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)=a+b\sqrt{3}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\left(2+\sqrt{3}\right)^{2}=a+b\sqrt{3}
Whakareatia te 2+\sqrt{3} ki te 2+\sqrt{3}, ka \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}=a+b\sqrt{3}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3=a+b\sqrt{3}
Ko te pūrua o \sqrt{3} ko 3.
7+4\sqrt{3}=a+b\sqrt{3}
Tāpirihia te 4 ki te 3, ka 7.
a+b\sqrt{3}=7+4\sqrt{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b\sqrt{3}=7+4\sqrt{3}-a
Tangohia te a mai i ngā taha e rua.
\sqrt{3}b=-a+4\sqrt{3}+7
He hanga arowhānui tō te whārite.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+4\sqrt{3}+7}{\sqrt{3}}
Whakawehea ngā taha e rua ki te \sqrt{3}.
b=\frac{-a+4\sqrt{3}+7}{\sqrt{3}}
Mā te whakawehe ki te \sqrt{3} ka wetekia te whakareanga ki te \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+4\sqrt{3}+7\right)}{3}
Whakawehe 4\sqrt{3}-a+7 ki te \sqrt{3}.