Whakaoti mō b
b=-\frac{\sqrt{3}\left(a-4\sqrt{3}-7\right)}{3}
Whakaoti mō a
a=-\sqrt{3}b+4\sqrt{3}+7
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { 2 + \sqrt { 3 } } { 2 - \sqrt { 3 } } = a + b \sqrt { 3 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=a+b\sqrt{3}
Whakangāwaritia te tauraro o \frac{2+\sqrt{3}}{2-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}=a+b\sqrt{3}
Whakaarohia te \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}=a+b\sqrt{3}
Pūrua 2. Pūrua \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}=a+b\sqrt{3}
Tangohia te 3 i te 4, ka 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)=a+b\sqrt{3}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\left(2+\sqrt{3}\right)^{2}=a+b\sqrt{3}
Whakareatia te 2+\sqrt{3} ki te 2+\sqrt{3}, ka \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}=a+b\sqrt{3}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3=a+b\sqrt{3}
Ko te pūrua o \sqrt{3} ko 3.
7+4\sqrt{3}=a+b\sqrt{3}
Tāpirihia te 4 ki te 3, ka 7.
a+b\sqrt{3}=7+4\sqrt{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b\sqrt{3}=7+4\sqrt{3}-a
Tangohia te a mai i ngā taha e rua.
\sqrt{3}b=-a+4\sqrt{3}+7
He hanga arowhānui tō te whārite.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+4\sqrt{3}+7}{\sqrt{3}}
Whakawehea ngā taha e rua ki te \sqrt{3}.
b=\frac{-a+4\sqrt{3}+7}{\sqrt{3}}
Mā te whakawehe ki te \sqrt{3} ka wetekia te whakareanga ki te \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+4\sqrt{3}+7\right)}{3}
Whakawehe 4\sqrt{3}-a+7 ki te \sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}