Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{2+\sqrt{3}}{2-\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2+\sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}
Pūrua 2. Pūrua \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}
Tangohia te 3 i te 4, ka 1.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\left(2+\sqrt{3}\right)^{2}
Whakareatia te 2+\sqrt{3} ki te 2+\sqrt{3}, ka \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(2+\sqrt{3}\right)^{2}.
4+4\sqrt{3}+3
Ko te pūrua o \sqrt{3} ko 3.
7+4\sqrt{3}
Tāpirihia te 4 ki te 3, ka 7.