Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{2+\sqrt{2}}{3+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 3-\sqrt{2}.
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{9-2}
Pūrua 3. Pūrua \sqrt{2}.
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{7}
Tangohia te 2 i te 9, ka 7.
\frac{6-2\sqrt{2}+3\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2+\sqrt{2} ki ia tau o 3-\sqrt{2}.
\frac{6+\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
Pahekotia te -2\sqrt{2} me 3\sqrt{2}, ka \sqrt{2}.
\frac{6+\sqrt{2}-2}{7}
Ko te pūrua o \sqrt{2} ko 2.
\frac{4+\sqrt{2}}{7}
Tangohia te 2 i te 6, ka 4.