Aromātai
\frac{\sqrt{2}+4}{7}\approx 0.77345908
Tauwehe
\frac{\sqrt{2} + 4}{7} = 0.7734590803390136
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}
Whakangāwaritia te tauraro o \frac{2+\sqrt{2}}{3+\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te 3-\sqrt{2}.
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{3^{2}-\left(\sqrt{2}\right)^{2}}
Whakaarohia te \left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{9-2}
Pūrua 3. Pūrua \sqrt{2}.
\frac{\left(2+\sqrt{2}\right)\left(3-\sqrt{2}\right)}{7}
Tangohia te 2 i te 9, ka 7.
\frac{6-2\sqrt{2}+3\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2+\sqrt{2} ki ia tau o 3-\sqrt{2}.
\frac{6+\sqrt{2}-\left(\sqrt{2}\right)^{2}}{7}
Pahekotia te -2\sqrt{2} me 3\sqrt{2}, ka \sqrt{2}.
\frac{6+\sqrt{2}-2}{7}
Ko te pūrua o \sqrt{2} ko 2.
\frac{4+\sqrt{2}}{7}
Tangohia te 2 i te 6, ka 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}