Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1994\left(n^{2}+n\right)}{n^{3}\times 2}
Me whakarea te \frac{1994}{n^{3}} ki te \frac{n^{2}+n}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{997\left(n^{2}+n\right)}{n^{3}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{997n\left(n+1\right)}{n^{3}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{997\left(n+1\right)}{n^{2}}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{997n+997}{n^{2}}
Me whakaroha te kīanga.
\frac{1994\left(n^{2}+n\right)}{n^{3}\times 2}
Me whakarea te \frac{1994}{n^{3}} ki te \frac{n^{2}+n}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{997\left(n^{2}+n\right)}{n^{3}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{997n\left(n+1\right)}{n^{3}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{997\left(n+1\right)}{n^{2}}
Me whakakore tahi te n i te taurunga me te tauraro.
\frac{997n+997}{n^{2}}
Me whakaroha te kīanga.