Aromātai
\frac{3x+34}{\left(x+5\right)^{2}}
Kimi Pārōnaki e ai ki x
\frac{-3x-53}{\left(x+5\right)^{3}}
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 19 } { x ^ { 2 } + 10 x + 25 } + \frac { 3 } { x + 5 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{19}{\left(x+5\right)^{2}}+\frac{3}{x+5}
Tauwehea te x^{2}+10x+25.
\frac{19}{\left(x+5\right)^{2}}+\frac{3\left(x+5\right)}{\left(x+5\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x+5\right)^{2} me x+5 ko \left(x+5\right)^{2}. Whakareatia \frac{3}{x+5} ki te \frac{x+5}{x+5}.
\frac{19+3\left(x+5\right)}{\left(x+5\right)^{2}}
Tā te mea he rite te tauraro o \frac{19}{\left(x+5\right)^{2}} me \frac{3\left(x+5\right)}{\left(x+5\right)^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{19+3x+15}{\left(x+5\right)^{2}}
Mahia ngā whakarea i roto o 19+3\left(x+5\right).
\frac{34+3x}{\left(x+5\right)^{2}}
Whakakotahitia ngā kupu rite i 19+3x+15.
\frac{34+3x}{x^{2}+10x+25}
Whakarohaina te \left(x+5\right)^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}