Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki s
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{18^{1}s^{3}t^{3}}{24^{1}s^{2}t^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{18^{1}}{24^{1}}s^{3-2}t^{3-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{18^{1}}{24^{1}}s^{1}t^{3-1}
Tango 2 mai i 3.
\frac{18^{1}}{24^{1}}st^{2}
Tango 1 mai i 3.
\frac{3}{4}st^{2}
Whakahekea te hautanga \frac{18}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{18t^{3}}{24t}s^{3-2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}s}(\frac{3t^{2}}{4}s^{1})
Mahia ngā tātaitanga.
\frac{3t^{2}}{4}s^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{3t^{2}}{4}s^{0}
Mahia ngā tātaitanga.
\frac{3t^{2}}{4}\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
\frac{3t^{2}}{4}
Mō tētahi kupu t, t\times 1=t me 1t=t.