Whakaoti mō d
d=26
Tohaina
Kua tāruatia ki te papatopenga
\left(d-13\right)\times 18=\left(d+13\right)\times 6
Tē taea kia ōrite te tāupe d ki tētahi o ngā uara -13,13 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(d-13\right)\left(d+13\right), arā, te tauraro pātahi he tino iti rawa te kitea o d+13,d-13.
18d-234=\left(d+13\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te d-13 ki te 18.
18d-234=6d+78
Whakamahia te āhuatanga tohatoha hei whakarea te d+13 ki te 6.
18d-234-6d=78
Tangohia te 6d mai i ngā taha e rua.
12d-234=78
Pahekotia te 18d me -6d, ka 12d.
12d=78+234
Me tāpiri te 234 ki ngā taha e rua.
12d=312
Tāpirihia te 78 ki te 234, ka 312.
d=\frac{312}{12}
Whakawehea ngā taha e rua ki te 12.
d=26
Whakawehea te 312 ki te 12, kia riro ko 26.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}