Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{18\left(\sqrt{7}-1\right)}{\left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right)}
Whakangāwaritia te tauraro o \frac{18}{\sqrt{7}+1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}-1.
\frac{18\left(\sqrt{7}-1\right)}{\left(\sqrt{7}\right)^{2}-1^{2}}
Whakaarohia te \left(\sqrt{7}+1\right)\left(\sqrt{7}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{18\left(\sqrt{7}-1\right)}{7-1}
Pūrua \sqrt{7}. Pūrua 1.
\frac{18\left(\sqrt{7}-1\right)}{6}
Tangohia te 1 i te 7, ka 6.
3\left(\sqrt{7}-1\right)
Whakawehea te 18\left(\sqrt{7}-1\right) ki te 6, kia riro ko 3\left(\sqrt{7}-1\right).
3\sqrt{7}-3
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te \sqrt{7}-1.