Aromātai
155
Tauwehe
5\times 31
Tohaina
Kua tāruatia ki te papatopenga
\frac{558\times 18\times 31-8\times 31\times 8\times 31}{26\times 62}
Whakareatia te 18 ki te 31, ka 558.
\frac{10044\times 31-8\times 31\times 8\times 31}{26\times 62}
Whakareatia te 558 ki te 18, ka 10044.
\frac{311364-8\times 31\times 8\times 31}{26\times 62}
Whakareatia te 10044 ki te 31, ka 311364.
\frac{311364-248\times 8\times 31}{26\times 62}
Whakareatia te 8 ki te 31, ka 248.
\frac{311364-1984\times 31}{26\times 62}
Whakareatia te 248 ki te 8, ka 1984.
\frac{311364-61504}{26\times 62}
Whakareatia te 1984 ki te 31, ka 61504.
\frac{249860}{26\times 62}
Tangohia te 61504 i te 311364, ka 249860.
\frac{249860}{1612}
Whakareatia te 26 ki te 62, ka 1612.
155
Whakawehea te 249860 ki te 1612, kia riro ko 155.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}