Aromātai
1000m
Kimi Pārōnaki e ai ki m
1000
Tohaina
Kua tāruatia ki te papatopenga
\frac{178kg}{\frac{89\times 1000kg}{m^{3}}\times 2\times 10^{-6}m^{2}}
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
\frac{178kg}{\frac{89000kg}{m^{3}}\times 2\times 10^{-6}m^{2}}
Whakareatia te 89 ki te 1000, ka 89000.
\frac{178kg}{\frac{89000kg}{m^{3}}\times 2\times \frac{1}{1000000}m^{2}}
Tātaihia te 10 mā te pū o -6, kia riro ko \frac{1}{1000000}.
\frac{178kg}{\frac{89000kg}{m^{3}}\times \frac{1}{500000}m^{2}}
Whakareatia te 2 ki te \frac{1}{1000000}, ka \frac{1}{500000}.
\frac{178kg}{\frac{89000kg}{m^{3}\times 500000}m^{2}}
Me whakarea te \frac{89000kg}{m^{3}} ki te \frac{1}{500000} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{178kg}{\frac{89gk}{500m^{3}}m^{2}}
Me whakakore tahi te 1000 i te taurunga me te tauraro.
\frac{178kg}{\frac{89gkm^{2}}{500m^{3}}}
Tuhia te \frac{89gk}{500m^{3}}m^{2} hei hautanga kotahi.
\frac{178kg}{\frac{89gk}{500m}}
Me whakakore tahi te m^{2} i te taurunga me te tauraro.
\frac{178kg\times 500m}{89gk}
Whakawehe 178kg ki te \frac{89gk}{500m} mā te whakarea 178kg ki te tau huripoki o \frac{89gk}{500m}.
2\times 500m
Me whakakore tahi te 89gk i te taurunga me te tauraro.
1000m
Whakareatia te 2 ki te 500, ka 1000.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{178kg}{\frac{89\times 1000kg}{m^{3}}\times 2\times 10^{-6}m^{2}})
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{178kg}{\frac{89000kg}{m^{3}}\times 2\times 10^{-6}m^{2}})
Whakareatia te 89 ki te 1000, ka 89000.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{178kg}{\frac{89000kg}{m^{3}}\times 2\times \frac{1}{1000000}m^{2}})
Tātaihia te 10 mā te pū o -6, kia riro ko \frac{1}{1000000}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{178kg}{\frac{89000kg}{m^{3}}\times \frac{1}{500000}m^{2}})
Whakareatia te 2 ki te \frac{1}{1000000}, ka \frac{1}{500000}.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{178kg}{\frac{89000kg}{m^{3}\times 500000}m^{2}})
Me whakarea te \frac{89000kg}{m^{3}} ki te \frac{1}{500000} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{178kg}{\frac{89gk}{500m^{3}}m^{2}})
Me whakakore tahi te 1000 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{178kg}{\frac{89gkm^{2}}{500m^{3}}})
Tuhia te \frac{89gk}{500m^{3}}m^{2} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{178kg}{\frac{89gk}{500m}})
Me whakakore tahi te m^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}m}(\frac{178kg\times 500m}{89gk})
Whakawehe 178kg ki te \frac{89gk}{500m} mā te whakarea 178kg ki te tau huripoki o \frac{89gk}{500m}.
\frac{\mathrm{d}}{\mathrm{d}m}(2\times 500m)
Me whakakore tahi te 89gk i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}m}(1000m)
Whakareatia te 2 ki te 500, ka 1000.
1000m^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
1000m^{0}
Tango 1 mai i 1.
1000\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
1000
Mō tētahi kupu t, t\times 1=t me 1t=t.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}