Aromātai
4
Tauwehe
2^{2}
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 178 - 5 ( 2 ^ { 2 } + 6 ) } { 24 \div 3 \cdot 4 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{178-5\left(4+6\right)}{\frac{24}{3}\times 4}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{178-5\times 10}{\frac{24}{3}\times 4}
Tāpirihia te 4 ki te 6, ka 10.
\frac{178-50}{\frac{24}{3}\times 4}
Whakareatia te 5 ki te 10, ka 50.
\frac{128}{\frac{24}{3}\times 4}
Tangohia te 50 i te 178, ka 128.
\frac{128}{8\times 4}
Whakawehea te 24 ki te 3, kia riro ko 8.
\frac{128}{32}
Whakareatia te 8 ki te 4, ka 32.
4
Whakawehea te 128 ki te 32, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}