Aromātai
\frac{179}{30}\approx 5.966666667
Tauwehe
\frac{179}{2 \cdot 3 \cdot 5} = 5\frac{29}{30} = 5.966666666666667
Pātaitai
Arithmetic
\frac { 17 } { 5 } + \frac { 17 } { 5 } - ( \frac { 1 } { 3 } + \frac { 1 } { 2 } )
Tohaina
Kua tāruatia ki te papatopenga
\frac{17+17}{5}-\left(\frac{1}{3}+\frac{1}{2}\right)
Tā te mea he rite te tauraro o \frac{17}{5} me \frac{17}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{34}{5}-\left(\frac{1}{3}+\frac{1}{2}\right)
Tāpirihia te 17 ki te 17, ka 34.
\frac{34}{5}-\left(\frac{2}{6}+\frac{3}{6}\right)
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{1}{3} me \frac{1}{2} ki te hautau me te tautūnga 6.
\frac{34}{5}-\frac{2+3}{6}
Tā te mea he rite te tauraro o \frac{2}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{34}{5}-\frac{5}{6}
Tāpirihia te 2 ki te 3, ka 5.
\frac{204}{30}-\frac{25}{30}
Ko te maha noa iti rawa atu o 5 me 6 ko 30. Me tahuri \frac{34}{5} me \frac{5}{6} ki te hautau me te tautūnga 30.
\frac{204-25}{30}
Tā te mea he rite te tauraro o \frac{204}{30} me \frac{25}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{179}{30}
Tangohia te 25 i te 204, ka 179.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}