Whakaoti mō x
x=-56
x=42
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+14\right)\times 168-x\times 168=x\left(x+14\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -14,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+14\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+14.
168x+2352-x\times 168=x\left(x+14\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+14 ki te 168.
168x+2352-x\times 168=x^{2}+14x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+14.
168x+2352-x\times 168-x^{2}=14x
Tangohia te x^{2} mai i ngā taha e rua.
168x+2352-x\times 168-x^{2}-14x=0
Tangohia te 14x mai i ngā taha e rua.
154x+2352-x\times 168-x^{2}=0
Pahekotia te 168x me -14x, ka 154x.
154x+2352-168x-x^{2}=0
Whakareatia te -1 ki te 168, ka -168.
-14x+2352-x^{2}=0
Pahekotia te 154x me -168x, ka -14x.
-x^{2}-14x+2352=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-14 ab=-2352=-2352
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+2352. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-2352 2,-1176 3,-784 4,-588 6,-392 7,-336 8,-294 12,-196 14,-168 16,-147 21,-112 24,-98 28,-84 42,-56 48,-49
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -2352.
1-2352=-2351 2-1176=-1174 3-784=-781 4-588=-584 6-392=-386 7-336=-329 8-294=-286 12-196=-184 14-168=-154 16-147=-131 21-112=-91 24-98=-74 28-84=-56 42-56=-14 48-49=-1
Tātaihia te tapeke mō ia takirua.
a=42 b=-56
Ko te otinga te takirua ka hoatu i te tapeke -14.
\left(-x^{2}+42x\right)+\left(-56x+2352\right)
Tuhia anō te -x^{2}-14x+2352 hei \left(-x^{2}+42x\right)+\left(-56x+2352\right).
x\left(-x+42\right)+56\left(-x+42\right)
Tauwehea te x i te tuatahi me te 56 i te rōpū tuarua.
\left(-x+42\right)\left(x+56\right)
Whakatauwehea atu te kīanga pātahi -x+42 mā te whakamahi i te āhuatanga tātai tohatoha.
x=42 x=-56
Hei kimi otinga whārite, me whakaoti te -x+42=0 me te x+56=0.
\left(x+14\right)\times 168-x\times 168=x\left(x+14\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -14,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+14\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+14.
168x+2352-x\times 168=x\left(x+14\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+14 ki te 168.
168x+2352-x\times 168=x^{2}+14x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+14.
168x+2352-x\times 168-x^{2}=14x
Tangohia te x^{2} mai i ngā taha e rua.
168x+2352-x\times 168-x^{2}-14x=0
Tangohia te 14x mai i ngā taha e rua.
154x+2352-x\times 168-x^{2}=0
Pahekotia te 168x me -14x, ka 154x.
154x+2352-168x-x^{2}=0
Whakareatia te -1 ki te 168, ka -168.
-14x+2352-x^{2}=0
Pahekotia te 154x me -168x, ka -14x.
-x^{2}-14x+2352=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-1\right)\times 2352}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -14 mō b, me 2352 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\left(-1\right)\times 2352}}{2\left(-1\right)}
Pūrua -14.
x=\frac{-\left(-14\right)±\sqrt{196+4\times 2352}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-14\right)±\sqrt{196+9408}}{2\left(-1\right)}
Whakareatia 4 ki te 2352.
x=\frac{-\left(-14\right)±\sqrt{9604}}{2\left(-1\right)}
Tāpiri 196 ki te 9408.
x=\frac{-\left(-14\right)±98}{2\left(-1\right)}
Tuhia te pūtakerua o te 9604.
x=\frac{14±98}{2\left(-1\right)}
Ko te tauaro o -14 ko 14.
x=\frac{14±98}{-2}
Whakareatia 2 ki te -1.
x=\frac{112}{-2}
Nā, me whakaoti te whārite x=\frac{14±98}{-2} ina he tāpiri te ±. Tāpiri 14 ki te 98.
x=-56
Whakawehe 112 ki te -2.
x=-\frac{84}{-2}
Nā, me whakaoti te whārite x=\frac{14±98}{-2} ina he tango te ±. Tango 98 mai i 14.
x=42
Whakawehe -84 ki te -2.
x=-56 x=42
Kua oti te whārite te whakatau.
\left(x+14\right)\times 168-x\times 168=x\left(x+14\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -14,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+14\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+14.
168x+2352-x\times 168=x\left(x+14\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+14 ki te 168.
168x+2352-x\times 168=x^{2}+14x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+14.
168x+2352-x\times 168-x^{2}=14x
Tangohia te x^{2} mai i ngā taha e rua.
168x+2352-x\times 168-x^{2}-14x=0
Tangohia te 14x mai i ngā taha e rua.
154x+2352-x\times 168-x^{2}=0
Pahekotia te 168x me -14x, ka 154x.
154x-x\times 168-x^{2}=-2352
Tangohia te 2352 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
154x-168x-x^{2}=-2352
Whakareatia te -1 ki te 168, ka -168.
-14x-x^{2}=-2352
Pahekotia te 154x me -168x, ka -14x.
-x^{2}-14x=-2352
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-14x}{-1}=-\frac{2352}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{14}{-1}\right)x=-\frac{2352}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+14x=-\frac{2352}{-1}
Whakawehe -14 ki te -1.
x^{2}+14x=2352
Whakawehe -2352 ki te -1.
x^{2}+14x+7^{2}=2352+7^{2}
Whakawehea te 14, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 7. Nā, tāpiria te pūrua o te 7 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+14x+49=2352+49
Pūrua 7.
x^{2}+14x+49=2401
Tāpiri 2352 ki te 49.
\left(x+7\right)^{2}=2401
Tauwehea x^{2}+14x+49. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{2401}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+7=49 x+7=-49
Whakarūnātia.
x=42 x=-56
Me tango 7 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}