Aromātai
-2
Tauwehe
-2
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(16-m^{2}\right)\left(2m+4\right)}{\left(m-2\right)\left(m+4\right)\left(m-4\right)}\times \frac{m-2}{m+2}
Whakawehe \frac{16-m^{2}}{\left(m-2\right)\left(m+4\right)} ki te \frac{m-4}{2m+4} mā te whakarea \frac{16-m^{2}}{\left(m-2\right)\left(m+4\right)} ki te tau huripoki o \frac{m-4}{2m+4}.
\frac{2\left(m-4\right)\left(-m-4\right)\left(m+2\right)}{\left(m-4\right)\left(m-2\right)\left(m+4\right)}\times \frac{m-2}{m+2}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(16-m^{2}\right)\left(2m+4\right)}{\left(m-2\right)\left(m+4\right)\left(m-4\right)}.
\frac{-2\left(m-4\right)\left(m+2\right)\left(m+4\right)}{\left(m-4\right)\left(m-2\right)\left(m+4\right)}\times \frac{m-2}{m+2}
Unuhia te tohu tōraro i roto o -4-m.
\frac{-2\left(m+2\right)}{m-2}\times \frac{m-2}{m+2}
Me whakakore tahi te \left(m-4\right)\left(m+4\right) i te taurunga me te tauraro.
\frac{-2\left(m+2\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}
Me whakarea te \frac{-2\left(m+2\right)}{m-2} ki te \frac{m-2}{m+2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-2
Me whakakore tahi te \left(m-2\right)\left(m+2\right) i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}