Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Tohaina

\frac{\left(16-m^{2}\right)\left(2m+4\right)}{\left(m-2\right)\left(m+4\right)\left(m-4\right)}\times \frac{m-2}{m+2}
Whakawehe \frac{16-m^{2}}{\left(m-2\right)\left(m+4\right)} ki te \frac{m-4}{2m+4} mā te whakarea \frac{16-m^{2}}{\left(m-2\right)\left(m+4\right)} ki te tau huripoki o \frac{m-4}{2m+4}.
\frac{2\left(m-4\right)\left(-m-4\right)\left(m+2\right)}{\left(m-4\right)\left(m-2\right)\left(m+4\right)}\times \frac{m-2}{m+2}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(16-m^{2}\right)\left(2m+4\right)}{\left(m-2\right)\left(m+4\right)\left(m-4\right)}.
\frac{-2\left(m-4\right)\left(m+2\right)\left(m+4\right)}{\left(m-4\right)\left(m-2\right)\left(m+4\right)}\times \frac{m-2}{m+2}
Unuhia te tohu tōraro i roto o -4-m.
\frac{-2\left(m+2\right)}{m-2}\times \frac{m-2}{m+2}
Me whakakore tahi te \left(m-4\right)\left(m+4\right) i te taurunga me te tauraro.
\frac{-2\left(m+2\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}
Me whakarea te \frac{-2\left(m+2\right)}{m-2} ki te \frac{m-2}{m+2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-2
Me whakakore tahi te \left(m-2\right)\left(m+2\right) i te taurunga me te tauraro.