Whakaoti mō y
y<0
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { 16 - 03 } { 2 } y + \frac { 44 + 15 } { 5 } y < - 405 y
Tohaina
Kua tāruatia ki te papatopenga
5\left(16-0\times 3\right)y+2\left(44+15\right)y<-4050y
Me whakarea ngā taha e rua o te whārite ki te 10, arā, te tauraro pātahi he tino iti rawa te kitea o 2,5. I te mea he tōrunga te 10, kāore e huri te ahunga koreōrite.
5\left(16-0\right)y+2\left(44+15\right)y<-4050y
Whakareatia te 0 ki te 3, ka 0.
5\times 16y+2\left(44+15\right)y<-4050y
Tangohia te 0 i te 16, ka 16.
80y+2\left(44+15\right)y<-4050y
Whakareatia te 5 ki te 16, ka 80.
80y+2\times 59y<-4050y
Tāpirihia te 44 ki te 15, ka 59.
80y+118y<-4050y
Whakareatia te 2 ki te 59, ka 118.
198y<-4050y
Pahekotia te 80y me 118y, ka 198y.
198y+4050y<0
Me tāpiri te 4050y ki ngā taha e rua.
4248y<0
Pahekotia te 198y me 4050y, ka 4248y.
y<0
Ko te otinga o ngā tau e rua ko <0 ina ko >0 tētahi, ā, ko <0 tētahi. Ina ko 4248>0, he <0 rawa a y.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}