Whakaoti mō h
h=-8
h=4
Tohaina
Kua tāruatia ki te papatopenga
2\times 16=\left(h+4\right)h
Tē taea kia ōrite te tāupe h ki -4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(h+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o h+4,2.
32=\left(h+4\right)h
Whakareatia te 2 ki te 16, ka 32.
32=h^{2}+4h
Whakamahia te āhuatanga tohatoha hei whakarea te h+4 ki te h.
h^{2}+4h=32
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h^{2}+4h-32=0
Tangohia te 32 mai i ngā taha e rua.
h=\frac{-4±\sqrt{4^{2}-4\left(-32\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 4 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-4±\sqrt{16-4\left(-32\right)}}{2}
Pūrua 4.
h=\frac{-4±\sqrt{16+128}}{2}
Whakareatia -4 ki te -32.
h=\frac{-4±\sqrt{144}}{2}
Tāpiri 16 ki te 128.
h=\frac{-4±12}{2}
Tuhia te pūtakerua o te 144.
h=\frac{8}{2}
Nā, me whakaoti te whārite h=\frac{-4±12}{2} ina he tāpiri te ±. Tāpiri -4 ki te 12.
h=4
Whakawehe 8 ki te 2.
h=-\frac{16}{2}
Nā, me whakaoti te whārite h=\frac{-4±12}{2} ina he tango te ±. Tango 12 mai i -4.
h=-8
Whakawehe -16 ki te 2.
h=4 h=-8
Kua oti te whārite te whakatau.
2\times 16=\left(h+4\right)h
Tē taea kia ōrite te tāupe h ki -4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2\left(h+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o h+4,2.
32=\left(h+4\right)h
Whakareatia te 2 ki te 16, ka 32.
32=h^{2}+4h
Whakamahia te āhuatanga tohatoha hei whakarea te h+4 ki te h.
h^{2}+4h=32
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h^{2}+4h+2^{2}=32+2^{2}
Whakawehea te 4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 2. Nā, tāpiria te pūrua o te 2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
h^{2}+4h+4=32+4
Pūrua 2.
h^{2}+4h+4=36
Tāpiri 32 ki te 4.
\left(h+2\right)^{2}=36
Tauwehea h^{2}+4h+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+2\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
h+2=6 h+2=-6
Whakarūnātia.
h=4 h=-8
Me tango 2 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}