Kimi Pārōnaki e ai ki f
-\frac{1}{f^{2}}
Aromātai
\frac{1}{f}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\mathrm{d}}{\mathrm{d}f}(\frac{1}{f})
Tā te mea he rite te tauraro o \frac{16}{f} me \frac{15}{f}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 15 i te 16, ka 1.
-f^{-1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-f^{-2}
Tango 1 mai i -1.
\frac{1}{f}
Tā te mea he rite te tauraro o \frac{16}{f} me \frac{15}{f}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 15 i te 16, ka 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}