Whakaoti mō a
a\geq 85
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { 16 } { 5 } a + \frac { 37 } { 10 } ( 25 - a ) \leq 50
Tohaina
Kua tāruatia ki te papatopenga
\frac{16}{5}a+\frac{37}{10}\times 25+\frac{37}{10}\left(-1\right)a\leq 50
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{37}{10} ki te 25-a.
\frac{16}{5}a+\frac{37\times 25}{10}+\frac{37}{10}\left(-1\right)a\leq 50
Tuhia te \frac{37}{10}\times 25 hei hautanga kotahi.
\frac{16}{5}a+\frac{925}{10}+\frac{37}{10}\left(-1\right)a\leq 50
Whakareatia te 37 ki te 25, ka 925.
\frac{16}{5}a+\frac{185}{2}+\frac{37}{10}\left(-1\right)a\leq 50
Whakahekea te hautanga \frac{925}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{16}{5}a+\frac{185}{2}-\frac{37}{10}a\leq 50
Whakareatia te \frac{37}{10} ki te -1, ka -\frac{37}{10}.
-\frac{1}{2}a+\frac{185}{2}\leq 50
Pahekotia te \frac{16}{5}a me -\frac{37}{10}a, ka -\frac{1}{2}a.
-\frac{1}{2}a\leq 50-\frac{185}{2}
Tangohia te \frac{185}{2} mai i ngā taha e rua.
-\frac{1}{2}a\leq \frac{100}{2}-\frac{185}{2}
Me tahuri te 50 ki te hautau \frac{100}{2}.
-\frac{1}{2}a\leq \frac{100-185}{2}
Tā te mea he rite te tauraro o \frac{100}{2} me \frac{185}{2}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1}{2}a\leq -\frac{85}{2}
Tangohia te 185 i te 100, ka -85.
a\geq -\frac{85}{2}\left(-2\right)
Me whakarea ngā taha e rua ki te -2, te tau utu o -\frac{1}{2}. I te mea he tōraro a -\frac{1}{2}, ka huri te ahunga koreōrite.
a\geq \frac{-85\left(-2\right)}{2}
Tuhia te -\frac{85}{2}\left(-2\right) hei hautanga kotahi.
a\geq \frac{170}{2}
Whakareatia te -85 ki te -2, ka 170.
a\geq 85
Whakawehea te 170 ki te 2, kia riro ko 85.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}