Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{16}{3}=\frac{174\times 50}{456-174}
Tangohia te 1 i te 4, ka 3.
\frac{16}{3}=\frac{8700}{456-174}
Whakareatia te 174 ki te 50, ka 8700.
\frac{16}{3}=\frac{8700}{282}
Tangohia te 174 i te 456, ka 282.
\frac{16}{3}=\frac{1450}{47}
Whakahekea te hautanga \frac{8700}{282} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{752}{141}=\frac{4350}{141}
Ko te maha noa iti rawa atu o 3 me 47 ko 141. Me tahuri \frac{16}{3} me \frac{1450}{47} ki te hautau me te tautūnga 141.
\text{false}
Whakatauritea te \frac{752}{141} me te \frac{4350}{141}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}