Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

b^{2}\times 16-4\times 9=4b^{2}
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4b^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 4,b^{2}.
b^{2}\times 16-36=4b^{2}
Whakareatia te -4 ki te 9, ka -36.
b^{2}\times 16-36-4b^{2}=0
Tangohia te 4b^{2} mai i ngā taha e rua.
12b^{2}-36=0
Pahekotia te b^{2}\times 16 me -4b^{2}, ka 12b^{2}.
12b^{2}=36
Me tāpiri te 36 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
b^{2}=\frac{36}{12}
Whakawehea ngā taha e rua ki te 12.
b^{2}=3
Whakawehea te 36 ki te 12, kia riro ko 3.
b=\sqrt{3} b=-\sqrt{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b^{2}\times 16-4\times 9=4b^{2}
Tē taea kia ōrite te tāupe b ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4b^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o 4,b^{2}.
b^{2}\times 16-36=4b^{2}
Whakareatia te -4 ki te 9, ka -36.
b^{2}\times 16-36-4b^{2}=0
Tangohia te 4b^{2} mai i ngā taha e rua.
12b^{2}-36=0
Pahekotia te b^{2}\times 16 me -4b^{2}, ka 12b^{2}.
b=\frac{0±\sqrt{0^{2}-4\times 12\left(-36\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, 0 mō b, me -36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\times 12\left(-36\right)}}{2\times 12}
Pūrua 0.
b=\frac{0±\sqrt{-48\left(-36\right)}}{2\times 12}
Whakareatia -4 ki te 12.
b=\frac{0±\sqrt{1728}}{2\times 12}
Whakareatia -48 ki te -36.
b=\frac{0±24\sqrt{3}}{2\times 12}
Tuhia te pūtakerua o te 1728.
b=\frac{0±24\sqrt{3}}{24}
Whakareatia 2 ki te 12.
b=\sqrt{3}
Nā, me whakaoti te whārite b=\frac{0±24\sqrt{3}}{24} ina he tāpiri te ±.
b=-\sqrt{3}
Nā, me whakaoti te whārite b=\frac{0±24\sqrt{3}}{24} ina he tango te ±.
b=\sqrt{3} b=-\sqrt{3}
Kua oti te whārite te whakatau.