Aromātai
144
Tauwehe
2^{4}\times 3^{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{16^{-1}\times 27^{-1}\times 81^{\frac{1}{4}}}{16^{-2}\times 27^{-\frac{4}{2}}\times 81^{\frac{2}{4}}}
Whakawehea te 2 ki te 2, kia riro ko 1.
\frac{\frac{1}{16}\times 27^{-1}\times 81^{\frac{1}{4}}}{16^{-2}\times 27^{-\frac{4}{2}}\times 81^{\frac{2}{4}}}
Tātaihia te 16 mā te pū o -1, kia riro ko \frac{1}{16}.
\frac{\frac{1}{16}\times \frac{1}{27}\times 81^{\frac{1}{4}}}{16^{-2}\times 27^{-\frac{4}{2}}\times 81^{\frac{2}{4}}}
Tātaihia te 27 mā te pū o -1, kia riro ko \frac{1}{27}.
\frac{\frac{1}{432}\times 81^{\frac{1}{4}}}{16^{-2}\times 27^{-\frac{4}{2}}\times 81^{\frac{2}{4}}}
Whakareatia te \frac{1}{16} ki te \frac{1}{27}, ka \frac{1}{432}.
\frac{\frac{1}{432}\times 3}{16^{-2}\times 27^{-\frac{4}{2}}\times 81^{\frac{2}{4}}}
Tātaihia te 81 mā te pū o \frac{1}{4}, kia riro ko 3.
\frac{\frac{1}{144}}{16^{-2}\times 27^{-\frac{4}{2}}\times 81^{\frac{2}{4}}}
Whakareatia te \frac{1}{432} ki te 3, ka \frac{1}{144}.
\frac{\frac{1}{144}}{\frac{1}{256}\times 27^{-\frac{4}{2}}\times 81^{\frac{2}{4}}}
Tātaihia te 16 mā te pū o -2, kia riro ko \frac{1}{256}.
\frac{\frac{1}{144}}{\frac{1}{256}\times 27^{-2}\times 81^{\frac{2}{4}}}
Whakawehea te 4 ki te 2, kia riro ko 2.
\frac{\frac{1}{144}}{\frac{1}{256}\times \frac{1}{729}\times 81^{\frac{2}{4}}}
Tātaihia te 27 mā te pū o -2, kia riro ko \frac{1}{729}.
\frac{\frac{1}{144}}{\frac{1}{186624}\times 81^{\frac{2}{4}}}
Whakareatia te \frac{1}{256} ki te \frac{1}{729}, ka \frac{1}{186624}.
\frac{\frac{1}{144}}{\frac{1}{186624}\times 81^{\frac{1}{2}}}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{1}{144}}{\frac{1}{186624}\times 9}
Tātaihia te 81 mā te pū o \frac{1}{2}, kia riro ko 9.
\frac{\frac{1}{144}}{\frac{1}{20736}}
Whakareatia te \frac{1}{186624} ki te 9, ka \frac{1}{20736}.
\frac{1}{144}\times 20736
Whakawehe \frac{1}{144} ki te \frac{1}{20736} mā te whakarea \frac{1}{144} ki te tau huripoki o \frac{1}{20736}.
144
Whakareatia te \frac{1}{144} ki te 20736, ka 144.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}