Aromātai
3y^{3}
Kimi Pārōnaki e ai ki y
9y^{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{15^{1}x^{1}y^{5}}{5^{1}x^{1}y^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{15^{1}}{5^{1}}x^{1-1}y^{5-2}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{15^{1}}{5^{1}}x^{0}y^{5-2}
Tango 1 mai i 1.
\frac{15^{1}}{5^{1}}y^{5-2}
Mō tētahi tau a mahue te 0, a^{0}=1.
\frac{15^{1}}{5^{1}}y^{3}
Tango 2 mai i 5.
3y^{3}
Whakawehe 15 ki te 5.
\frac{\mathrm{d}}{\mathrm{d}y}(3y^{3})
Me whakakore tahi te 5xy^{2} i te taurunga me te tauraro.
3\times 3y^{3-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
9y^{3-1}
Whakareatia 3 ki te 3.
9y^{2}
Tango 1 mai i 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}