Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(15n^{1}\right)^{1}\times \frac{1}{30n^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
15^{1}\left(n^{1}\right)^{1}\times \frac{1}{30}\times \frac{1}{n^{3}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
15^{1}\times \frac{1}{30}\left(n^{1}\right)^{1}\times \frac{1}{n^{3}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
15^{1}\times \frac{1}{30}n^{1}n^{3\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
15^{1}\times \frac{1}{30}n^{1}n^{-3}
Whakareatia 3 ki te -1.
15^{1}\times \frac{1}{30}n^{1-3}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
15^{1}\times \frac{1}{30}n^{-2}
Tāpirihia ngā taupū 1 me -3.
15\times \frac{1}{30}n^{-2}
Hīkina te 15 ki te pū 1.
\frac{1}{2}n^{-2}
Whakareatia 15 ki te \frac{1}{30}.
\frac{15^{1}n^{1}}{30^{1}n^{3}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{15^{1}n^{1-3}}{30^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{15^{1}n^{-2}}{30^{1}}
Tango 3 mai i 1.
\frac{1}{2}n^{-2}
Whakahekea te hautanga \frac{15}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{15}{30}n^{1-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}n}(\frac{1}{2}n^{-2})
Mahia ngā tātaitanga.
-2\times \frac{1}{2}n^{-2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-n^{-3}
Mahia ngā tātaitanga.