Whakaoti mō x
x = \frac{30}{13} = 2\frac{4}{13} \approx 2.307692308
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\times 15+x\times 14=40x
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x, arā, te tauraro pātahi he tino iti rawa te kitea o x,4.
60+x\times 14=40x
Whakareatia te 4 ki te 15, ka 60.
60+x\times 14-40x=0
Tangohia te 40x mai i ngā taha e rua.
60-26x=0
Pahekotia te x\times 14 me -40x, ka -26x.
-26x=-60
Tangohia te 60 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-60}{-26}
Whakawehea ngā taha e rua ki te -26.
x=\frac{30}{13}
Whakahekea te hautanga \frac{-60}{-26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}