Whakaoti mō y
y=-\frac{1}{2}=-0.5
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 15 } { 4 } - \frac { 3 } { 2 } y - 5 y = 7
Tohaina
Kua tāruatia ki te papatopenga
\frac{15}{4}-\frac{13}{2}y=7
Pahekotia te -\frac{3}{2}y me -5y, ka -\frac{13}{2}y.
-\frac{13}{2}y=7-\frac{15}{4}
Tangohia te \frac{15}{4} mai i ngā taha e rua.
-\frac{13}{2}y=\frac{28}{4}-\frac{15}{4}
Me tahuri te 7 ki te hautau \frac{28}{4}.
-\frac{13}{2}y=\frac{28-15}{4}
Tā te mea he rite te tauraro o \frac{28}{4} me \frac{15}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{13}{2}y=\frac{13}{4}
Tangohia te 15 i te 28, ka 13.
y=\frac{13}{4}\left(-\frac{2}{13}\right)
Me whakarea ngā taha e rua ki te -\frac{2}{13}, te tau utu o -\frac{13}{2}.
y=\frac{13\left(-2\right)}{4\times 13}
Me whakarea te \frac{13}{4} ki te -\frac{2}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
y=\frac{-2}{4}
Me whakakore tahi te 13 i te taurunga me te tauraro.
y=-\frac{1}{2}
Whakahekea te hautanga \frac{-2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}