Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{15}{2.25\times 3}=\frac{10}{4\times 1.125-5}
Whakareatia te 2 ki te 1.125, ka 2.25.
\frac{15}{6.75}=\frac{10}{4\times 1.125-5}
Whakareatia te 2.25 ki te 3, ka 6.75.
\frac{1500}{675}=\frac{10}{4\times 1.125-5}
Whakarohaina te \frac{15}{6.75} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{20}{9}=\frac{10}{4\times 1.125-5}
Whakahekea te hautanga \frac{1500}{675} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 75.
\frac{20}{9}=\frac{10}{4.5-5}
Whakareatia te 4 ki te 1.125, ka 4.5.
\frac{20}{9}=\frac{10}{-0.5}
Tangohia te 5 i te 4.5, ka -0.5.
\frac{20}{9}=\frac{100}{-5}
Whakarohaina te \frac{10}{-0.5} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{20}{9}=-20
Whakawehea te 100 ki te -5, kia riro ko -20.
\frac{20}{9}=-\frac{180}{9}
Me tahuri te -20 ki te hautau -\frac{180}{9}.
\text{false}
Whakatauritea te \frac{20}{9} me te -\frac{180}{9}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}