Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
\frac{15}{2250\times 3}=\frac{10}{4\times 1125-5}
Whakareatia te 2 ki te 1125, ka 2250.
\frac{15}{6750}=\frac{10}{4\times 1125-5}
Whakareatia te 2250 ki te 3, ka 6750.
\frac{1}{450}=\frac{10}{4\times 1125-5}
Whakahekea te hautanga \frac{15}{6750} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{1}{450}=\frac{10}{4500-5}
Whakareatia te 4 ki te 1125, ka 4500.
\frac{1}{450}=\frac{10}{4495}
Tangohia te 5 i te 4500, ka 4495.
\frac{1}{450}=\frac{2}{899}
Whakahekea te hautanga \frac{10}{4495} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{899}{404550}=\frac{900}{404550}
Ko te maha noa iti rawa atu o 450 me 899 ko 404550. Me tahuri \frac{1}{450} me \frac{2}{899} ki te hautau me te tautūnga 404550.
\text{false}
Whakatauritea te \frac{899}{404550} me te \frac{900}{404550}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}