Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

144+y^{2}y^{2}=40y^{2}
Tē taea kia ōrite te tāupe y ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te y^{2}.
144+y^{4}=40y^{2}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
144+y^{4}-40y^{2}=0
Tangohia te 40y^{2} mai i ngā taha e rua.
t^{2}-40t+144=0
Whakakapia te t mō te y^{2}.
t=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 1\times 144}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -40 mō te b, me te 144 mō te c i te ture pūrua.
t=\frac{40±32}{2}
Mahia ngā tātaitai.
t=36 t=4
Whakaotia te whārite t=\frac{40±32}{2} ina he tōrunga te ±, ina he tōraro te ±.
y=6 y=-6 y=2 y=-2
I te mea ko y=t^{2}, ka riro ngā otinga mā te arotake i te y=±\sqrt{t} mō ia t.