Whakaoti mō x
x=8
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 144 } { 216 } = \frac { 18 x } { 18 x + 72 }
Tohaina
Kua tāruatia ki te papatopenga
\left(x+4\right)\times 144=12\times 18x
Tē taea kia ōrite te tāupe x ki -4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 216\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o 216,18x+72.
144x+576=12\times 18x
Whakamahia te āhuatanga tohatoha hei whakarea te x+4 ki te 144.
144x+576=216x
Whakareatia te 12 ki te 18, ka 216.
144x+576-216x=0
Tangohia te 216x mai i ngā taha e rua.
-72x+576=0
Pahekotia te 144x me -216x, ka -72x.
-72x=-576
Tangohia te 576 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-576}{-72}
Whakawehea ngā taha e rua ki te -72.
x=8
Whakawehea te -576 ki te -72, kia riro ko 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}