Tīpoka ki ngā ihirangi matua
Whakaoti mō r
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

r^{2}=\frac{144}{169}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r^{2}-\frac{144}{169}=0
Tangohia te \frac{144}{169} mai i ngā taha e rua.
169r^{2}-144=0
Me whakarea ngā taha e rua ki te 169.
\left(13r-12\right)\left(13r+12\right)=0
Whakaarohia te 169r^{2}-144. Tuhia anō te 169r^{2}-144 hei \left(13r\right)^{2}-12^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
r=\frac{12}{13} r=-\frac{12}{13}
Hei kimi otinga whārite, me whakaoti te 13r-12=0 me te 13r+12=0.
r^{2}=\frac{144}{169}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r=\frac{12}{13} r=-\frac{12}{13}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
r^{2}=\frac{144}{169}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
r^{2}-\frac{144}{169}=0
Tangohia te \frac{144}{169} mai i ngā taha e rua.
r=\frac{0±\sqrt{0^{2}-4\left(-\frac{144}{169}\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me -\frac{144}{169} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-\frac{144}{169}\right)}}{2}
Pūrua 0.
r=\frac{0±\sqrt{\frac{576}{169}}}{2}
Whakareatia -4 ki te -\frac{144}{169}.
r=\frac{0±\frac{24}{13}}{2}
Tuhia te pūtakerua o te \frac{576}{169}.
r=\frac{12}{13}
Nā, me whakaoti te whārite r=\frac{0±\frac{24}{13}}{2} ina he tāpiri te ±.
r=-\frac{12}{13}
Nā, me whakaoti te whārite r=\frac{0±\frac{24}{13}}{2} ina he tango te ±.
r=\frac{12}{13} r=-\frac{12}{13}
Kua oti te whārite te whakatau.