Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(14y^{1}\right)^{1}\times \frac{1}{42y^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
14^{1}\left(y^{1}\right)^{1}\times \frac{1}{42}\times \frac{1}{y^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
14^{1}\times \frac{1}{42}\left(y^{1}\right)^{1}\times \frac{1}{y^{2}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
14^{1}\times \frac{1}{42}y^{1}y^{2\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
14^{1}\times \frac{1}{42}y^{1}y^{-2}
Whakareatia 2 ki te -1.
14^{1}\times \frac{1}{42}y^{1-2}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
14^{1}\times \frac{1}{42}\times \frac{1}{y}
Tāpirihia ngā taupū 1 me -2.
14\times \frac{1}{42}\times \frac{1}{y}
Hīkina te 14 ki te pū 1.
\frac{1}{3}\times \frac{1}{y}
Whakareatia 14 ki te \frac{1}{42}.
\frac{14^{1}y^{1}}{42^{1}y^{2}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{14^{1}y^{1-2}}{42^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{14^{1}\times \frac{1}{y}}{42^{1}}
Tango 2 mai i 1.
\frac{1}{3}\times \frac{1}{y}
Whakahekea te hautanga \frac{14}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{14}{42}y^{1-2})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{3}\times \frac{1}{y})
Mahia ngā tātaitanga.
-\frac{1}{3}y^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-\frac{1}{3}y^{-2}
Mahia ngā tātaitanga.