Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{139\times 10^{-3}\times 24^{-15}}{4\pi \sqrt{2}\times 10^{-15}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{139\times 10^{12}\times 24^{-15}}{4\pi \sqrt{2}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{139\times 1000000000000\times 24^{-15}}{4\pi \sqrt{2}}
Tātaihia te 10 mā te pū o 12, kia riro ko 1000000000000.
\frac{139000000000000\times 24^{-15}}{4\pi \sqrt{2}}
Whakareatia te 139 ki te 1000000000000, ka 139000000000000.
\frac{139000000000000\times \frac{1}{504857282956046106624}}{4\pi \sqrt{2}}
Tātaihia te 24 mā te pū o -15, kia riro ko \frac{1}{504857282956046106624}.
\frac{\frac{33935546875}{123256172596690944}}{4\pi \sqrt{2}}
Whakareatia te 139000000000000 ki te \frac{1}{504857282956046106624}, ka \frac{33935546875}{123256172596690944}.
\frac{\frac{33935546875}{123256172596690944}\sqrt{2}}{4\pi \left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\frac{33935546875}{123256172596690944}}{4\pi \sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\frac{33935546875}{123256172596690944}\sqrt{2}}{4\pi \times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\frac{33935546875}{123256172596690944}\sqrt{2}}{8\pi }
Whakareatia te 4 ki te 2, ka 8.