Aromātai
\frac{33935546875\sqrt{2}}{986049380773527552\pi }\approx 0.000000015
Tohaina
Kua tāruatia ki te papatopenga
\frac{139\times 10^{-3}\times 24^{-15}}{4\pi \sqrt{2}\times 10^{-15}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{139\times 10^{12}\times 24^{-15}}{4\pi \sqrt{2}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{139\times 1000000000000\times 24^{-15}}{4\pi \sqrt{2}}
Tātaihia te 10 mā te pū o 12, kia riro ko 1000000000000.
\frac{139000000000000\times 24^{-15}}{4\pi \sqrt{2}}
Whakareatia te 139 ki te 1000000000000, ka 139000000000000.
\frac{139000000000000\times \frac{1}{504857282956046106624}}{4\pi \sqrt{2}}
Tātaihia te 24 mā te pū o -15, kia riro ko \frac{1}{504857282956046106624}.
\frac{\frac{33935546875}{123256172596690944}}{4\pi \sqrt{2}}
Whakareatia te 139000000000000 ki te \frac{1}{504857282956046106624}, ka \frac{33935546875}{123256172596690944}.
\frac{\frac{33935546875}{123256172596690944}\sqrt{2}}{4\pi \left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\frac{33935546875}{123256172596690944}}{4\pi \sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\frac{33935546875}{123256172596690944}\sqrt{2}}{4\pi \times 2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\frac{33935546875}{123256172596690944}\sqrt{2}}{8\pi }
Whakareatia te 4 ki te 2, ka 8.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}