Aromātai
\frac{2329}{2359}\approx 0.987282747
Tauwehe
\frac{17 \cdot 137}{7 \cdot 337} = 0.9872827469266638
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 137 ^ { 1 } 34 } { 12 + 16 \times 3 + 137 ^ { 1 } 34 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{137\times 34}{12+16\times 3+137^{1}\times 34}
Tātaihia te 137 mā te pū o 1, kia riro ko 137.
\frac{4658}{12+16\times 3+137^{1}\times 34}
Whakareatia te 137 ki te 34, ka 4658.
\frac{4658}{12+48+137^{1}\times 34}
Whakareatia te 16 ki te 3, ka 48.
\frac{4658}{60+137^{1}\times 34}
Tāpirihia te 12 ki te 48, ka 60.
\frac{4658}{60+137\times 34}
Tātaihia te 137 mā te pū o 1, kia riro ko 137.
\frac{4658}{60+4658}
Whakareatia te 137 ki te 34, ka 4658.
\frac{4658}{4718}
Tāpirihia te 60 ki te 4658, ka 4718.
\frac{2329}{2359}
Whakahekea te hautanga \frac{4658}{4718} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}