Whakaoti mō v
v = -\frac{5320}{263} = -20\frac{60}{263} \approx -20.228136882
Tohaina
Kua tāruatia ki te papatopenga
40\times 133+40v\left(-\frac{1}{40}\right)=-2v\left(133-1\right)
Tē taea kia ōrite te tāupe v ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 40v, arā, te tauraro pātahi he tino iti rawa te kitea o v,40,-20.
5320+40v\left(-\frac{1}{40}\right)=-2v\left(133-1\right)
Whakareatia te 40 ki te 133, ka 5320.
5320-v=-2v\left(133-1\right)
Me whakakore te 40 me te 40.
5320-v=-2v\times 132
Tangohia te 1 i te 133, ka 132.
5320-v=-264v
Whakareatia te -2 ki te 132, ka -264.
5320-v+264v=0
Me tāpiri te 264v ki ngā taha e rua.
5320+263v=0
Pahekotia te -v me 264v, ka 263v.
263v=-5320
Tangohia te 5320 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
v=\frac{-5320}{263}
Whakawehea ngā taha e rua ki te 263.
v=-\frac{5320}{263}
Ka taea te hautanga \frac{-5320}{263} te tuhi anō ko -\frac{5320}{263} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}