Aromātai
\frac{144}{121}\approx 1.190082645
Tauwehe
\frac{2 ^ {4} \cdot 3 ^ {2}}{11 ^ {2}} = 1\frac{23}{121} = 1.1900826446280992
Tohaina
Kua tāruatia ki te papatopenga
\frac{143}{66}-\frac{35}{66}+\frac{27}{121}\times \frac{5}{3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Ko te maha noa iti rawa atu o 6 me 66 ko 66. Me tahuri \frac{13}{6} me \frac{35}{66} ki te hautau me te tautūnga 66.
\frac{143-35}{66}+\frac{27}{121}\times \frac{5}{3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Tā te mea he rite te tauraro o \frac{143}{66} me \frac{35}{66}, me tango rāua mā te tango i ō raua taurunga.
\frac{108}{66}+\frac{27}{121}\times \frac{5}{3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Tangohia te 35 i te 143, ka 108.
\frac{18}{11}+\frac{27}{121}\times \frac{5}{3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Whakahekea te hautanga \frac{108}{66} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{18}{11}+\frac{27\times 5}{121\times 3}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Me whakarea te \frac{27}{121} ki te \frac{5}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{18}{11}+\frac{135}{363}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Mahia ngā whakarea i roto i te hautanga \frac{27\times 5}{121\times 3}.
\frac{18}{11}+\frac{45}{121}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Whakahekea te hautanga \frac{135}{363} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{198}{121}+\frac{45}{121}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Ko te maha noa iti rawa atu o 11 me 121 ko 121. Me tahuri \frac{18}{11} me \frac{45}{121} ki te hautau me te tautūnga 121.
\frac{198+45}{121}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Tā te mea he rite te tauraro o \frac{198}{121} me \frac{45}{121}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{243}{121}-\left(\frac{14}{15}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Tāpirihia te 198 ki te 45, ka 243.
\frac{243}{121}-\left(\frac{154}{165}+\frac{8}{165}\right)\left(\frac{2}{9}+\frac{11}{18}\right)
Ko te maha noa iti rawa atu o 15 me 165 ko 165. Me tahuri \frac{14}{15} me \frac{8}{165} ki te hautau me te tautūnga 165.
\frac{243}{121}-\frac{154+8}{165}\left(\frac{2}{9}+\frac{11}{18}\right)
Tā te mea he rite te tauraro o \frac{154}{165} me \frac{8}{165}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{243}{121}-\frac{162}{165}\left(\frac{2}{9}+\frac{11}{18}\right)
Tāpirihia te 154 ki te 8, ka 162.
\frac{243}{121}-\frac{54}{55}\left(\frac{2}{9}+\frac{11}{18}\right)
Whakahekea te hautanga \frac{162}{165} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{243}{121}-\frac{54}{55}\left(\frac{4}{18}+\frac{11}{18}\right)
Ko te maha noa iti rawa atu o 9 me 18 ko 18. Me tahuri \frac{2}{9} me \frac{11}{18} ki te hautau me te tautūnga 18.
\frac{243}{121}-\frac{54}{55}\times \frac{4+11}{18}
Tā te mea he rite te tauraro o \frac{4}{18} me \frac{11}{18}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{243}{121}-\frac{54}{55}\times \frac{15}{18}
Tāpirihia te 4 ki te 11, ka 15.
\frac{243}{121}-\frac{54}{55}\times \frac{5}{6}
Whakahekea te hautanga \frac{15}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{243}{121}-\frac{54\times 5}{55\times 6}
Me whakarea te \frac{54}{55} ki te \frac{5}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{243}{121}-\frac{270}{330}
Mahia ngā whakarea i roto i te hautanga \frac{54\times 5}{55\times 6}.
\frac{243}{121}-\frac{9}{11}
Whakahekea te hautanga \frac{270}{330} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 30.
\frac{243}{121}-\frac{99}{121}
Ko te maha noa iti rawa atu o 121 me 11 ko 121. Me tahuri \frac{243}{121} me \frac{9}{11} ki te hautau me te tautūnga 121.
\frac{243-99}{121}
Tā te mea he rite te tauraro o \frac{243}{121} me \frac{99}{121}, me tango rāua mā te tango i ō raua taurunga.
\frac{144}{121}
Tangohia te 99 i te 243, ka 144.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}