Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{13}{6}+\frac{3}{2}x-x=\frac{7}{3}
Tangohia te x mai i ngā taha e rua.
\frac{13}{6}+\frac{1}{2}x=\frac{7}{3}
Pahekotia te \frac{3}{2}x me -x, ka \frac{1}{2}x.
\frac{1}{2}x=\frac{7}{3}-\frac{13}{6}
Tangohia te \frac{13}{6} mai i ngā taha e rua.
\frac{1}{2}x=\frac{14}{6}-\frac{13}{6}
Ko te maha noa iti rawa atu o 3 me 6 ko 6. Me tahuri \frac{7}{3} me \frac{13}{6} ki te hautau me te tautūnga 6.
\frac{1}{2}x=\frac{14-13}{6}
Tā te mea he rite te tauraro o \frac{14}{6} me \frac{13}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}x=\frac{1}{6}
Tangohia te 13 i te 14, ka 1.
x=\frac{1}{6}\times 2
Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}.
x=\frac{2}{6}
Whakareatia te \frac{1}{6} ki te 2, ka \frac{2}{6}.
x=\frac{1}{3}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.