Whakaoti mō x
x=-\frac{10}{13}\approx -0.769230769
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{13}{4}x^{2}-4x-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{13}{4}\left(-5\right)}}{2\times \frac{13}{4}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{13}{4} mō a, -4 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{13}{4}\left(-5\right)}}{2\times \frac{13}{4}}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16-13\left(-5\right)}}{2\times \frac{13}{4}}
Whakareatia -4 ki te \frac{13}{4}.
x=\frac{-\left(-4\right)±\sqrt{16+65}}{2\times \frac{13}{4}}
Whakareatia -13 ki te -5.
x=\frac{-\left(-4\right)±\sqrt{81}}{2\times \frac{13}{4}}
Tāpiri 16 ki te 65.
x=\frac{-\left(-4\right)±9}{2\times \frac{13}{4}}
Tuhia te pūtakerua o te 81.
x=\frac{4±9}{2\times \frac{13}{4}}
Ko te tauaro o -4 ko 4.
x=\frac{4±9}{\frac{13}{2}}
Whakareatia 2 ki te \frac{13}{4}.
x=\frac{13}{\frac{13}{2}}
Nā, me whakaoti te whārite x=\frac{4±9}{\frac{13}{2}} ina he tāpiri te ±. Tāpiri 4 ki te 9.
x=2
Whakawehe 13 ki te \frac{13}{2} mā te whakarea 13 ki te tau huripoki o \frac{13}{2}.
x=-\frac{5}{\frac{13}{2}}
Nā, me whakaoti te whārite x=\frac{4±9}{\frac{13}{2}} ina he tango te ±. Tango 9 mai i 4.
x=-\frac{10}{13}
Whakawehe -5 ki te \frac{13}{2} mā te whakarea -5 ki te tau huripoki o \frac{13}{2}.
x=2 x=-\frac{10}{13}
Kua oti te whārite te whakatau.
\frac{13}{4}x^{2}-4x-5=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{13}{4}x^{2}-4x-5-\left(-5\right)=-\left(-5\right)
Me tāpiri 5 ki ngā taha e rua o te whārite.
\frac{13}{4}x^{2}-4x=-\left(-5\right)
Mā te tango i te -5 i a ia ake anō ka toe ko te 0.
\frac{13}{4}x^{2}-4x=5
Tango -5 mai i 0.
\frac{\frac{13}{4}x^{2}-4x}{\frac{13}{4}}=\frac{5}{\frac{13}{4}}
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\left(-\frac{4}{\frac{13}{4}}\right)x=\frac{5}{\frac{13}{4}}
Mā te whakawehe ki te \frac{13}{4} ka wetekia te whakareanga ki te \frac{13}{4}.
x^{2}-\frac{16}{13}x=\frac{5}{\frac{13}{4}}
Whakawehe -4 ki te \frac{13}{4} mā te whakarea -4 ki te tau huripoki o \frac{13}{4}.
x^{2}-\frac{16}{13}x=\frac{20}{13}
Whakawehe 5 ki te \frac{13}{4} mā te whakarea 5 ki te tau huripoki o \frac{13}{4}.
x^{2}-\frac{16}{13}x+\left(-\frac{8}{13}\right)^{2}=\frac{20}{13}+\left(-\frac{8}{13}\right)^{2}
Whakawehea te -\frac{16}{13}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{8}{13}. Nā, tāpiria te pūrua o te -\frac{8}{13} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{16}{13}x+\frac{64}{169}=\frac{20}{13}+\frac{64}{169}
Pūruatia -\frac{8}{13} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{16}{13}x+\frac{64}{169}=\frac{324}{169}
Tāpiri \frac{20}{13} ki te \frac{64}{169} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{8}{13}\right)^{2}=\frac{324}{169}
Tauwehea x^{2}-\frac{16}{13}x+\frac{64}{169}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{13}\right)^{2}}=\sqrt{\frac{324}{169}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{8}{13}=\frac{18}{13} x-\frac{8}{13}=-\frac{18}{13}
Whakarūnātia.
x=2 x=-\frac{10}{13}
Me tāpiri \frac{8}{13} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}