Whakaoti mō p
p=5
Pātaitai
Linear Equation
\frac { 13 } { 2 } = \frac { 3 ( p + 2 ) } { 2 } - \frac { 2 ( p + 1 ) } { 3 }
Tohaina
Kua tāruatia ki te papatopenga
39=3\times 3\left(p+2\right)-2\times 2\left(p+1\right)
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
39=9\left(p+2\right)-4\left(p+1\right)
Whakareatia te 3 ki te 3, ka 9. Whakareatia te -2 ki te 2, ka -4.
39=9p+18-4\left(p+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te p+2.
39=9p+18-4p-4
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te p+1.
39=5p+18-4
Pahekotia te 9p me -4p, ka 5p.
39=5p+14
Tangohia te 4 i te 18, ka 14.
5p+14=39
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
5p=39-14
Tangohia te 14 mai i ngā taha e rua.
5p=25
Tangohia te 14 i te 39, ka 25.
p=\frac{25}{5}
Whakawehea ngā taha e rua ki te 5.
p=5
Whakawehea te 25 ki te 5, kia riro ko 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}