Whakaoti mō x
x\leq \frac{4}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
13+1\geq 18x-10
Whakareatia ngā taha e rua o te whārite ki te 2. I te mea he tōrunga te 2, kāore e huri te ahunga koreōrite.
14\geq 18x-10
Tāpirihia te 13 ki te 1, ka 14.
18x-10\leq 14
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa. Ka huri tēnei i te aronga o te tohu.
18x\leq 14+10
Me tāpiri te 10 ki ngā taha e rua.
18x\leq 24
Tāpirihia te 14 ki te 10, ka 24.
x\leq \frac{24}{18}
Whakawehea ngā taha e rua ki te 18. I te mea he tōrunga te 18, kāore e huri te ahunga koreōrite.
x\leq \frac{4}{3}
Whakahekea te hautanga \frac{24}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}