Whakaoti mō a
a=-10\sqrt{47}i+10\approx 10-68.556546004i
a=10+10\sqrt{47}i\approx 10+68.556546004i
Pātaitai
Complex Number
5 raruraru e ōrite ana ki:
\frac { 1200 } { a } = \frac { 1200 } { ( a - 20 ) } + 5
Tohaina
Kua tāruatia ki te papatopenga
\left(a-20\right)\times 1200=a\times 1200+a\left(a-20\right)\times 5
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara 0,20 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te a\left(a-20\right), arā, te tauraro pātahi he tino iti rawa te kitea o a,a-20.
1200a-24000=a\times 1200+a\left(a-20\right)\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te a-20 ki te 1200.
1200a-24000=a\times 1200+\left(a^{2}-20a\right)\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a-20.
1200a-24000=a\times 1200+5a^{2}-100a
Whakamahia te āhuatanga tohatoha hei whakarea te a^{2}-20a ki te 5.
1200a-24000=1100a+5a^{2}
Pahekotia te a\times 1200 me -100a, ka 1100a.
1200a-24000-1100a=5a^{2}
Tangohia te 1100a mai i ngā taha e rua.
100a-24000=5a^{2}
Pahekotia te 1200a me -1100a, ka 100a.
100a-24000-5a^{2}=0
Tangohia te 5a^{2} mai i ngā taha e rua.
-5a^{2}+100a-24000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-100±\sqrt{100^{2}-4\left(-5\right)\left(-24000\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 100 mō b, me -24000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-100±\sqrt{10000-4\left(-5\right)\left(-24000\right)}}{2\left(-5\right)}
Pūrua 100.
a=\frac{-100±\sqrt{10000+20\left(-24000\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
a=\frac{-100±\sqrt{10000-480000}}{2\left(-5\right)}
Whakareatia 20 ki te -24000.
a=\frac{-100±\sqrt{-470000}}{2\left(-5\right)}
Tāpiri 10000 ki te -480000.
a=\frac{-100±100\sqrt{47}i}{2\left(-5\right)}
Tuhia te pūtakerua o te -470000.
a=\frac{-100±100\sqrt{47}i}{-10}
Whakareatia 2 ki te -5.
a=\frac{-100+100\sqrt{47}i}{-10}
Nā, me whakaoti te whārite a=\frac{-100±100\sqrt{47}i}{-10} ina he tāpiri te ±. Tāpiri -100 ki te 100i\sqrt{47}.
a=-10\sqrt{47}i+10
Whakawehe -100+100i\sqrt{47} ki te -10.
a=\frac{-100\sqrt{47}i-100}{-10}
Nā, me whakaoti te whārite a=\frac{-100±100\sqrt{47}i}{-10} ina he tango te ±. Tango 100i\sqrt{47} mai i -100.
a=10+10\sqrt{47}i
Whakawehe -100-100i\sqrt{47} ki te -10.
a=-10\sqrt{47}i+10 a=10+10\sqrt{47}i
Kua oti te whārite te whakatau.
\left(a-20\right)\times 1200=a\times 1200+a\left(a-20\right)\times 5
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara 0,20 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te a\left(a-20\right), arā, te tauraro pātahi he tino iti rawa te kitea o a,a-20.
1200a-24000=a\times 1200+a\left(a-20\right)\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te a-20 ki te 1200.
1200a-24000=a\times 1200+\left(a^{2}-20a\right)\times 5
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a-20.
1200a-24000=a\times 1200+5a^{2}-100a
Whakamahia te āhuatanga tohatoha hei whakarea te a^{2}-20a ki te 5.
1200a-24000=1100a+5a^{2}
Pahekotia te a\times 1200 me -100a, ka 1100a.
1200a-24000-1100a=5a^{2}
Tangohia te 1100a mai i ngā taha e rua.
100a-24000=5a^{2}
Pahekotia te 1200a me -1100a, ka 100a.
100a-24000-5a^{2}=0
Tangohia te 5a^{2} mai i ngā taha e rua.
100a-5a^{2}=24000
Me tāpiri te 24000 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
-5a^{2}+100a=24000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5a^{2}+100a}{-5}=\frac{24000}{-5}
Whakawehea ngā taha e rua ki te -5.
a^{2}+\frac{100}{-5}a=\frac{24000}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
a^{2}-20a=\frac{24000}{-5}
Whakawehe 100 ki te -5.
a^{2}-20a=-4800
Whakawehe 24000 ki te -5.
a^{2}-20a+\left(-10\right)^{2}=-4800+\left(-10\right)^{2}
Whakawehea te -20, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -10. Nā, tāpiria te pūrua o te -10 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}-20a+100=-4800+100
Pūrua -10.
a^{2}-20a+100=-4700
Tāpiri -4800 ki te 100.
\left(a-10\right)^{2}=-4700
Tauwehea a^{2}-20a+100. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-10\right)^{2}}=\sqrt{-4700}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a-10=10\sqrt{47}i a-10=-10\sqrt{47}i
Whakarūnātia.
a=10+10\sqrt{47}i a=-10\sqrt{47}i+10
Me tāpiri 10 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}