Whakaoti mō x
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x-\left(x-3\right)\times 4=12
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -3,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-3\right)\left(x+3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}-9,x+3.
12x-\left(4x-12\right)=12
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 4.
12x-4x+12=12
Hei kimi i te tauaro o 4x-12, kimihia te tauaro o ia taurangi.
8x+12=12
Pahekotia te 12x me -4x, ka 8x.
8x=12-12
Tangohia te 12 mai i ngā taha e rua.
8x=0
Tangohia te 12 i te 12, ka 0.
x=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te 8 e ōrite ki 0, me ōrite pū te x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}