Whakaoti mō x
x=\frac{1}{2}=0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x+4+5\left(8x-6\right)-4\left(14x+3\right)=-40
Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 20,4,5.
12x+4+40x-30-4\left(14x+3\right)=-40
Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te 8x-6.
52x+4-30-4\left(14x+3\right)=-40
Pahekotia te 12x me 40x, ka 52x.
52x-26-4\left(14x+3\right)=-40
Tangohia te 30 i te 4, ka -26.
52x-26-56x-12=-40
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te 14x+3.
-4x-26-12=-40
Pahekotia te 52x me -56x, ka -4x.
-4x-38=-40
Tangohia te 12 i te -26, ka -38.
-4x=-40+38
Me tāpiri te 38 ki ngā taha e rua.
-4x=-2
Tāpirihia te -40 ki te 38, ka -2.
x=\frac{-2}{-4}
Whakawehea ngā taha e rua ki te -4.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-2}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}