Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{12i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1-i.
\frac{12i\left(1-i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12i\left(1-i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{12i\times 1+12\left(-1\right)i^{2}}{2}
Whakareatia 12i ki te 1-i.
\frac{12i\times 1+12\left(-1\right)\left(-1\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{12+12i}{2}
Mahia ngā whakarea i roto o 12i\times 1+12\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
6+6i
Whakawehea te 12+12i ki te 2, kia riro ko 6+6i.
Re(\frac{12i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Me whakarea te taurunga me te tauraro o \frac{12i}{1+i} ki te haumi hiato o te tauraro, 1-i.
Re(\frac{12i\left(1-i\right)}{1^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{12i\left(1-i\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{12i\times 1+12\left(-1\right)i^{2}}{2})
Whakareatia 12i ki te 1-i.
Re(\frac{12i\times 1+12\left(-1\right)\left(-1\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{12+12i}{2})
Mahia ngā whakarea i roto o 12i\times 1+12\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(6+6i)
Whakawehea te 12+12i ki te 2, kia riro ko 6+6i.
6
Ko te wāhi tūturu o 6+6i ko 6.