Aromātai
6+6i
Wāhi Tūturu
6
Tohaina
Kua tāruatia ki te papatopenga
\frac{12i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
Whakareatia te taurunga me te tauraro ki te haumi hiato o te tauraro, 1-i.
\frac{12i\left(1-i\right)}{1^{2}-i^{2}}
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12i\left(1-i\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
\frac{12i\times 1+12\left(-1\right)i^{2}}{2}
Whakareatia 12i ki te 1-i.
\frac{12i\times 1+12\left(-1\right)\left(-1\right)}{2}
Hei tōna tikanga, ko te i^{2} ko -1.
\frac{12+12i}{2}
Mahia ngā whakarea i roto o 12i\times 1+12\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
6+6i
Whakawehea te 12+12i ki te 2, kia riro ko 6+6i.
Re(\frac{12i\left(1-i\right)}{\left(1+i\right)\left(1-i\right)})
Me whakarea te taurunga me te tauraro o \frac{12i}{1+i} ki te haumi hiato o te tauraro, 1-i.
Re(\frac{12i\left(1-i\right)}{1^{2}-i^{2}})
Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{12i\left(1-i\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1. Tātaitia te tauraro.
Re(\frac{12i\times 1+12\left(-1\right)i^{2}}{2})
Whakareatia 12i ki te 1-i.
Re(\frac{12i\times 1+12\left(-1\right)\left(-1\right)}{2})
Hei tōna tikanga, ko te i^{2} ko -1.
Re(\frac{12+12i}{2})
Mahia ngā whakarea i roto o 12i\times 1+12\left(-1\right)\left(-1\right). Whakaraupapatia anō ngā kīanga tau.
Re(6+6i)
Whakawehea te 12+12i ki te 2, kia riro ko 6+6i.
6
Ko te wāhi tūturu o 6+6i ko 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}