Aromātai
-\frac{1940}{11}\approx -176.363636364
Tauwehe
-\frac{1940}{11} = -176\frac{4}{11} = -176.36363636363637
Tohaina
Kua tāruatia ki te papatopenga
\frac{-4}{11}-11\times 16
Tangohia te 16 i te 12, ka -4.
-\frac{4}{11}-11\times 16
Ka taea te hautanga \frac{-4}{11} te tuhi anō ko -\frac{4}{11} mā te tango i te tohu tōraro.
-\frac{4}{11}-176
Whakareatia te 11 ki te 16, ka 176.
-\frac{4}{11}-\frac{1936}{11}
Me tahuri te 176 ki te hautau \frac{1936}{11}.
\frac{-4-1936}{11}
Tā te mea he rite te tauraro o -\frac{4}{11} me \frac{1936}{11}, me tango rāua mā te tango i ō raua taurunga.
-\frac{1940}{11}
Tangohia te 1936 i te -4, ka -1940.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}