\frac { 12 ( 1 - 22 \% ) } { 96 }
Aromātai
\frac{39}{400}=0.0975
Tauwehe
\frac{3 \cdot 13}{2 ^ {4} \cdot 5 ^ {2}} = 0.0975
Tohaina
Kua tāruatia ki te papatopenga
\frac{12\left(1-\frac{11}{50}\right)}{96}
Whakahekea te hautanga \frac{22}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{12\left(\frac{50}{50}-\frac{11}{50}\right)}{96}
Me tahuri te 1 ki te hautau \frac{50}{50}.
\frac{12\times \frac{50-11}{50}}{96}
Tā te mea he rite te tauraro o \frac{50}{50} me \frac{11}{50}, me tango rāua mā te tango i ō raua taurunga.
\frac{12\times \frac{39}{50}}{96}
Tangohia te 11 i te 50, ka 39.
\frac{\frac{12\times 39}{50}}{96}
Tuhia te 12\times \frac{39}{50} hei hautanga kotahi.
\frac{\frac{468}{50}}{96}
Whakareatia te 12 ki te 39, ka 468.
\frac{\frac{234}{25}}{96}
Whakahekea te hautanga \frac{468}{50} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{234}{25\times 96}
Tuhia te \frac{\frac{234}{25}}{96} hei hautanga kotahi.
\frac{234}{2400}
Whakareatia te 25 ki te 96, ka 2400.
\frac{39}{400}
Whakahekea te hautanga \frac{234}{2400} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}