Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{12\left(9-\sqrt{7}\right)}{\left(9+\sqrt{7}\right)\left(9-\sqrt{7}\right)}
Whakangāwaritia te tauraro o \frac{12}{9+\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te 9-\sqrt{7}.
\frac{12\left(9-\sqrt{7}\right)}{9^{2}-\left(\sqrt{7}\right)^{2}}
Whakaarohia te \left(9+\sqrt{7}\right)\left(9-\sqrt{7}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(9-\sqrt{7}\right)}{81-7}
Pūrua 9. Pūrua \sqrt{7}.
\frac{12\left(9-\sqrt{7}\right)}{74}
Tangohia te 7 i te 81, ka 74.
\frac{6}{37}\left(9-\sqrt{7}\right)
Whakawehea te 12\left(9-\sqrt{7}\right) ki te 74, kia riro ko \frac{6}{37}\left(9-\sqrt{7}\right).
\frac{6}{37}\times 9+\frac{6}{37}\left(-1\right)\sqrt{7}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{6}{37} ki te 9-\sqrt{7}.
\frac{6\times 9}{37}+\frac{6}{37}\left(-1\right)\sqrt{7}
Tuhia te \frac{6}{37}\times 9 hei hautanga kotahi.
\frac{54}{37}+\frac{6}{37}\left(-1\right)\sqrt{7}
Whakareatia te 6 ki te 9, ka 54.
\frac{54}{37}-\frac{6}{37}\sqrt{7}
Whakareatia te \frac{6}{37} ki te -1, ka -\frac{6}{37}.