Whakaoti mō r
r=2
Tohaina
Kua tāruatia ki te papatopenga
\frac{12}{5}r+\frac{12}{5}\left(-2\right)=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{12}{5} ki te r-2.
\frac{12}{5}r+\frac{12\left(-2\right)}{5}=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
Tuhia te \frac{12}{5}\left(-2\right) hei hautanga kotahi.
\frac{12}{5}r+\frac{-24}{5}=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
Whakareatia te 12 ki te -2, ka -24.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(3r-2\left(2r-1\right)\right)
Ka taea te hautanga \frac{-24}{5} te tuhi anō ko -\frac{24}{5} mā te tango i te tohu tōraro.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(3r-4r+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 2r-1.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(-r+2\right)
Pahekotia te 3r me -4r, ka -r.
\frac{12}{5}r-\frac{24}{5}=\frac{2}{3}\left(-1\right)r+\frac{2}{3}\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{2}{3} ki te -r+2.
\frac{12}{5}r-\frac{24}{5}=-\frac{2}{3}r+\frac{2}{3}\times 2
Whakareatia te \frac{2}{3} ki te -1, ka -\frac{2}{3}.
\frac{12}{5}r-\frac{24}{5}=-\frac{2}{3}r+\frac{2\times 2}{3}
Tuhia te \frac{2}{3}\times 2 hei hautanga kotahi.
\frac{12}{5}r-\frac{24}{5}=-\frac{2}{3}r+\frac{4}{3}
Whakareatia te 2 ki te 2, ka 4.
\frac{12}{5}r-\frac{24}{5}+\frac{2}{3}r=\frac{4}{3}
Me tāpiri te \frac{2}{3}r ki ngā taha e rua.
\frac{46}{15}r-\frac{24}{5}=\frac{4}{3}
Pahekotia te \frac{12}{5}r me \frac{2}{3}r, ka \frac{46}{15}r.
\frac{46}{15}r=\frac{4}{3}+\frac{24}{5}
Me tāpiri te \frac{24}{5} ki ngā taha e rua.
\frac{46}{15}r=\frac{20}{15}+\frac{72}{15}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{4}{3} me \frac{24}{5} ki te hautau me te tautūnga 15.
\frac{46}{15}r=\frac{20+72}{15}
Tā te mea he rite te tauraro o \frac{20}{15} me \frac{72}{15}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{46}{15}r=\frac{92}{15}
Tāpirihia te 20 ki te 72, ka 92.
r=\frac{92}{15}\times \frac{15}{46}
Me whakarea ngā taha e rua ki te \frac{15}{46}, te tau utu o \frac{46}{15}.
r=\frac{92\times 15}{15\times 46}
Me whakarea te \frac{92}{15} ki te \frac{15}{46} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
r=\frac{92}{46}
Me whakakore tahi te 15 i te taurunga me te tauraro.
r=2
Whakawehea te 92 ki te 46, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}