Whakaoti mō x
x=-2
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-4\right)\times 12-\left(4+x\right)\times 12=8\left(x-4\right)\left(x+4\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -4,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4+x,4-x.
12x-48-\left(4+x\right)\times 12=8\left(x-4\right)\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-4 ki te 12.
12x-48-12\left(4+x\right)=8\left(x-4\right)\left(x+4\right)
Whakareatia te -1 ki te 12, ka -12.
12x-48-48-12x=8\left(x-4\right)\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 4+x.
12x-96-12x=8\left(x-4\right)\left(x+4\right)
Tangohia te 48 i te -48, ka -96.
-96=8\left(x-4\right)\left(x+4\right)
Pahekotia te 12x me -12x, ka 0.
-96=\left(8x-32\right)\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te x-4.
-96=8x^{2}-128
Whakamahia te āhuatanga tuaritanga hei whakarea te 8x-32 ki te x+4 ka whakakotahi i ngā kupu rite.
8x^{2}-128=-96
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8x^{2}=-96+128
Me tāpiri te 128 ki ngā taha e rua.
8x^{2}=32
Tāpirihia te -96 ki te 128, ka 32.
x^{2}=\frac{32}{8}
Whakawehea ngā taha e rua ki te 8.
x^{2}=4
Whakawehea te 32 ki te 8, kia riro ko 4.
x=2 x=-2
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\left(x-4\right)\times 12-\left(4+x\right)\times 12=8\left(x-4\right)\left(x+4\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -4,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x+4\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4+x,4-x.
12x-48-\left(4+x\right)\times 12=8\left(x-4\right)\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-4 ki te 12.
12x-48-12\left(4+x\right)=8\left(x-4\right)\left(x+4\right)
Whakareatia te -1 ki te 12, ka -12.
12x-48-48-12x=8\left(x-4\right)\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -12 ki te 4+x.
12x-96-12x=8\left(x-4\right)\left(x+4\right)
Tangohia te 48 i te -48, ka -96.
-96=8\left(x-4\right)\left(x+4\right)
Pahekotia te 12x me -12x, ka 0.
-96=\left(8x-32\right)\left(x+4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 8 ki te x-4.
-96=8x^{2}-128
Whakamahia te āhuatanga tuaritanga hei whakarea te 8x-32 ki te x+4 ka whakakotahi i ngā kupu rite.
8x^{2}-128=-96
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8x^{2}-128+96=0
Me tāpiri te 96 ki ngā taha e rua.
8x^{2}-32=0
Tāpirihia te -128 ki te 96, ka -32.
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-32\right)}}{2\times 8}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 8 mō a, 0 mō b, me -32 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 8\left(-32\right)}}{2\times 8}
Pūrua 0.
x=\frac{0±\sqrt{-32\left(-32\right)}}{2\times 8}
Whakareatia -4 ki te 8.
x=\frac{0±\sqrt{1024}}{2\times 8}
Whakareatia -32 ki te -32.
x=\frac{0±32}{2\times 8}
Tuhia te pūtakerua o te 1024.
x=\frac{0±32}{16}
Whakareatia 2 ki te 8.
x=2
Nā, me whakaoti te whārite x=\frac{0±32}{16} ina he tāpiri te ±. Whakawehe 32 ki te 16.
x=-2
Nā, me whakaoti te whārite x=\frac{0±32}{16} ina he tango te ±. Whakawehe -32 ki te 16.
x=2 x=-2
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}