Whakaoti mō a
a=\frac{\sqrt{6}}{3}\approx 0.816496581
a=-\frac{\sqrt{6}}{3}\approx -0.816496581
Tohaina
Kua tāruatia ki te papatopenga
12=3\left(3a^{2}+2\right)
Whakareatia ngā taha e rua o te whārite ki te 3a^{2}+2.
12=9a^{2}+6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3a^{2}+2.
9a^{2}+6=12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
9a^{2}=12-6
Tangohia te 6 mai i ngā taha e rua.
9a^{2}=6
Tangohia te 6 i te 12, ka 6.
a^{2}=\frac{6}{9}
Whakawehea ngā taha e rua ki te 9.
a^{2}=\frac{2}{3}
Whakahekea te hautanga \frac{6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
a=\frac{\sqrt{6}}{3} a=-\frac{\sqrt{6}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
12=3\left(3a^{2}+2\right)
Whakareatia ngā taha e rua o te whārite ki te 3a^{2}+2.
12=9a^{2}+6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3a^{2}+2.
9a^{2}+6=12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
9a^{2}+6-12=0
Tangohia te 12 mai i ngā taha e rua.
9a^{2}-6=0
Tangohia te 12 i te 6, ka -6.
a=\frac{0±\sqrt{0^{2}-4\times 9\left(-6\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 9\left(-6\right)}}{2\times 9}
Pūrua 0.
a=\frac{0±\sqrt{-36\left(-6\right)}}{2\times 9}
Whakareatia -4 ki te 9.
a=\frac{0±\sqrt{216}}{2\times 9}
Whakareatia -36 ki te -6.
a=\frac{0±6\sqrt{6}}{2\times 9}
Tuhia te pūtakerua o te 216.
a=\frac{0±6\sqrt{6}}{18}
Whakareatia 2 ki te 9.
a=\frac{\sqrt{6}}{3}
Nā, me whakaoti te whārite a=\frac{0±6\sqrt{6}}{18} ina he tāpiri te ±.
a=-\frac{\sqrt{6}}{3}
Nā, me whakaoti te whārite a=\frac{0±6\sqrt{6}}{18} ina he tango te ±.
a=\frac{\sqrt{6}}{3} a=-\frac{\sqrt{6}}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}