Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12=3\left(3a^{2}+2\right)
Whakareatia ngā taha e rua o te whārite ki te 3a^{2}+2.
12=9a^{2}+6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3a^{2}+2.
9a^{2}+6=12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
9a^{2}=12-6
Tangohia te 6 mai i ngā taha e rua.
9a^{2}=6
Tangohia te 6 i te 12, ka 6.
a^{2}=\frac{6}{9}
Whakawehea ngā taha e rua ki te 9.
a^{2}=\frac{2}{3}
Whakahekea te hautanga \frac{6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
a=\frac{\sqrt{6}}{3} a=-\frac{\sqrt{6}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
12=3\left(3a^{2}+2\right)
Whakareatia ngā taha e rua o te whārite ki te 3a^{2}+2.
12=9a^{2}+6
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3a^{2}+2.
9a^{2}+6=12
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
9a^{2}+6-12=0
Tangohia te 12 mai i ngā taha e rua.
9a^{2}-6=0
Tangohia te 12 i te 6, ka -6.
a=\frac{0±\sqrt{0^{2}-4\times 9\left(-6\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 9\left(-6\right)}}{2\times 9}
Pūrua 0.
a=\frac{0±\sqrt{-36\left(-6\right)}}{2\times 9}
Whakareatia -4 ki te 9.
a=\frac{0±\sqrt{216}}{2\times 9}
Whakareatia -36 ki te -6.
a=\frac{0±6\sqrt{6}}{2\times 9}
Tuhia te pūtakerua o te 216.
a=\frac{0±6\sqrt{6}}{18}
Whakareatia 2 ki te 9.
a=\frac{\sqrt{6}}{3}
Nā, me whakaoti te whārite a=\frac{0±6\sqrt{6}}{18} ina he tāpiri te ±.
a=-\frac{\sqrt{6}}{3}
Nā, me whakaoti te whārite a=\frac{0±6\sqrt{6}}{18} ina he tango te ±.
a=\frac{\sqrt{6}}{3} a=-\frac{\sqrt{6}}{3}
Kua oti te whārite te whakatau.