Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{12\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{12}{3-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 3+\sqrt{5}.
\frac{12\left(3+\sqrt{5}\right)}{3^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{12\left(3+\sqrt{5}\right)}{9-5}
Pūrua 3. Pūrua \sqrt{5}.
\frac{12\left(3+\sqrt{5}\right)}{4}
Tangohia te 5 i te 9, ka 4.
3\left(3+\sqrt{5}\right)
Whakawehea te 12\left(3+\sqrt{5}\right) ki te 4, kia riro ko 3\left(3+\sqrt{5}\right).
9+3\sqrt{5}
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te 3+\sqrt{5}.